Spectral properties of the earth’s contribution to seismic resolution

نویسنده

  • David A. Okaya
چکیده

Layered reflectivity sequences have spectral signatures (impulse responses) in accordance with timefrequency transformations. These signatures are filtered by a source under the convolutional definition of a seismogram. Spectral signatures of wedge models indicate that thin layers have preferred source bandwidths needed to produce either a tuned reflection or separate interface reflections. Sources that do not include these preferred frequencies do not produce optimally imaged reflections. Criteria for the classic tuning thickness and behavior of source-dependent amplitude versus time-thickness crossplots are better understood in relation to the reflectivity impulse response. Reflectivity spectra indicate that higher-order tuning thicknesses exist. Earth reflectivity also prevents the return of certain source frequencies; this behavior may possibly be an interpretive tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement in Temporal Resolution of Seismic Data Using Logarithmic Time-frequency Transform Method

The improvement in the temporal resolution of seismic data is a critical issue in hydrocarbon exploration. It is important for obtaining more detailed structural and stratigraphic information. Many methods have been introduced to improve the vertical resolution of reflection seismic data. Each method has advantages and disadvantages which are due to the assumptions and theories governing their ...

متن کامل

Comparing Geostatistical Seismic Inversion Based on Spectral Simulation with Deterministic Inversion: A Case Study

Seismic inversion is a method that extracts acoustic impedance data from the seismic traces. Source wavelets are band-limited, and thus seismic traces do not contain low and high frequency information. Therefore, there is a serious problem when the deterministic seismic inversion is applied to real data and the result of deterministic inversion is smooth. Low frequency component is obtained fro...

متن کامل

Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some resear...

متن کامل

The Use of Monte-Carlo Simulations in Seismic Hazard Analysis in Tehran and Surrounding Areas

Probabilistic seismic hazard analysis is a technique for estimating the annual rate of exceedance of a specified ground motion at a site due to the known and suspected earthquake sources. A Monte-Carlo approach is utilized to estimate the seismic hazard at a site. This method uses numerous resampling of an earthquake catalog to construct synthetic catalogs to evaluate the ground motion hazard a...

متن کامل

On the resolution of density anomalies in the Earth’s mantle using spectral fitting of normal-mode data

S U M M A R Y The resolution of the 3-D density structure in the Earth’s deep interior has long eluded geoscientists. High-quality data from digital seismic instruments emplaced this decade have renewed interest in the measurement of low-frequency Earth normal modes with the goal of extracting heterogeneous density structure. Here we perform a series of synthetic experiments aimed at investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000